Potential spaces on fractals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Spaces on Fractals

We introduce potential spaces on fractal metric spaces, investigate their embedding theorems, and derive various Besov spaces. Our starting point is that there exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the fractal considered. The results of this paper are among the marvelous consequences of the heat kernel on the fractal.

متن کامل

Function spaces and Hausdorff dimension on fractals

We start by surveying a possible approach for function spaces of Besov type on special closed subsets of Rn. Afterwards we recall that, in the case of Sobolev spaces and Besov spaces on Rn, the Hausdorff dimension for the graphs of continuous functions belonging to such spaces has been studied by several authors, and that in the case of Besov spaces the final answer concerning the maximal possi...

متن کامل

Fractals in G-Metric Spaces

The theory of iterated function systems (IFS) on complete metric spaces appears in almost all fractal based algorithms used for the purpose of compression of the images and their representation as well. Through a simple mathematical model, IFS technique provides an important tool for description and manipulation of the complex fractal attractors. In this paper we study the iterated function sys...

متن کامل

Random Walks on Homogeneous Spaces and Diophantine Approximation on Fractals

We extend results of Y. Benoist and J.-F. Quint concerning random walks on homogeneous spaces of simple Lie groups to the case where the measure defining the random walk generates a semigroup which is not necessarily Zariski dense, but satisfies some expansion properties for the adjoint action. Using these dynamical results, we study Diophantine properties of typical points on some self-similar...

متن کامل

Besov spaces on fractals and tempered Radon measures

Acknowledgements I would like to express my deepest gratitude to my supervisors Professor Hans Triebel and Professor Hans-Jürgen Schmeisser for many fruitful discussions, suggestions and remarks. I would like to thank the whole group " Function spaces " for inspiring and friendly atmosphere. Besides, I would like to thank Professor Krotov for helpful conversations and comments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2005

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm170-3-4